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Potential pollution risks of historic
landfills on low-lying coasts

and estuaries

James H. Brand, Kate L. Spencer,'* Francis T. O’Shea' and John E. Lindsay?

Historically, it was common practice to dispose of landfill waste in low-lying estua-
rine and coastal areas where land had limited value due to flood risk. Such “historic
landfills” are frequently unlined with no leachate management and inadequate
records of the waste they contain. Globally, there are 100,000s such landfills, for
example, in England there are >1200 historic landfills in low-lying coastal areas
with many in close proximity to designated environmental sites or in/near areas
influencing bathing water quality; yet, there is a very limited understanding of the
environmental risk posed. Hence, coastal managers are more likely to select con-
servative management policies, for example, hold-the-line, when alternative more
sustainable policies, for example, managed realignment, may be preferred. Some
historic coastal landfills have already started to erode and release waste, and with
the anticipated effects of climate change, erosion events are likely to become more
frequent. Strategies to mitigate the risk of contaminant release from historic land-
fills such as excavation and relocation or incineration of waste would be prohibi-
tively expensive for many countries. Therefore, it will be necessary to identify
which sites pose the greatest pollution risk in order that resources can be priori-
tized, and to develop alternative management strategies based on site specific risk.
Before such management strategies can be achieved there remain many unknowns
to be addressed including the extent of legacy pollution in coastal sediments,
impacts of saline flooding on contaminant release and the nature, behavior and
environmental impact of solid waste release in the coastal zone. © 2017 The Authors.
WIREs Water published by Wiley Periodicals, Inc.
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INTRODUCTION

isposal of solid and hazardous waste through
landfilling became common practice in Europe
and the US toward the end of the 19th Century.
Initial regulatory guidance for waste disposal
was highly variable with limited environmental
considerations; however, as populations, waste
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production, and environmental awareness grew the
guidelines for landfill operations became increasingly
detailed and stringent.! Prior to modern waste dis-
posal regulations in the latter half of the 20th Century
(e.g., the Resources Conservation and Recovery Act in
the US or the Waste Licensing Regulations in the UK),
waste was frequently disposed of in sites with no
impermeable lining, no leachate or gas collection/mon-
itoring and limited or nonexistent reporting of waste
materials, types (e.g., domestic, industrial, or hazard-
ous), or volumes. Indeed, despite the more recent intro-
duction of waste disposal regulations in the Global
South, much waste is still disposed of in uncontrolled
and poorly managed sites.”™ These landfills—as
opposed to modern containment landfills—often rely
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on natural attenuation in surrounding soils and sedi-
ments to disperse and dilute the leachate contaminants
to reduce the pollution impact on nearby surface and
ground waters.” Most of these landfills are now closed,
and are termed ‘historic’ or ‘legacy’ landfills, although
legal definitions vary according to national regulatory
authorities. This has left a widespread legacy of con-
taminated sites, for example, ¢. 100,000 historic land-
fills in the US,® c. 2000 in Flanders, Belgium,” c. 1000
in New Zealand,® c. 1000 in Austria’ and c. 20,000 in
England."

Awareness of historic landfills and legacy waste
is increasing and there is a growing body of evidence
to demonstrate their potential to pollute the sur-
rounding environment for decades following their
closure. First, there is evidence that in the absence of
linings or leachate management systems, sites may
release dissolved nitrogen and metals to groundwa-
ter, floodplains, river water, and surrounding inter-
tidal sediments.''™" Indeed, it is likely that some
leachate will eventually escape all landfills, including
those with impermeable and low permeability
liners.>'* Second, some historic landfills are already
eroding'*'® and there may be release of solid waste to
adjacent environments with potential implications for
ecological health.'” Finally, where historic sites are
used for grazing, which is common practice for closed
landfills, there is evidence that potentially toxic metals
can translocate into above ground biomass.'®

Historic landfills are frequently located on
low-lying floodplains and coastal plains due to their
proximity to population centers, easy access and the
low value of the land. Hence, they are at risk of flu-
vial or coastal flooding”'**® and these risks are
likely to increase with climate change. Climate
change is anticipated to cause higher sea levels,
resulting in increased saline intrusion into estuaries,
more frequent and intense storm events, higher storm
surges and increased coastal flooding.”'™*° Where
historic landfills are currently defended from the sea,
coastal squeeze is likely to increase further the risk of
flooding due to the loss of wave attenuating salt-
marshes and may also increase the risk of ero-
sion.?®?” Flooding a landfill site will increase the
volume of leachate generated by increasing percola-
tion and the piezometric head of the leachate, which
will cause the rate of leachate leakage to increase.’
Neuhold and Nachtnebel®® estimated that metal
release during fluvial flooding of landfills may
increase by up to four orders of magnitude through
leaching or up to six orders of magnitude if matrix
material is eroded. However, there is less understand-
ing of how flooding with seawater and increased
throughput of saline water will affect leachate
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contaminant loads. Over the next 100 years, many
low-lying coastal locations are also expected to
erode, and it is increasingly likely that more historic
coastal landfills will begin to erode or catastrophi-
cally fail releasing solid waste and previously trapped
leachates into the coastal zone. This is of particular
concern due to the paucity of information regarding
the waste materials present. Consequently, it is
important to identify the potential receptors of any
waste released and its contaminants to understand
better the scale of the potential pollution risk and
begin to identify the level of resources that would be
required to address it.

This paper focuses on the potential pollution
risks of historic coastal landfills sites in England. His-
toric landfills are defined by the Environment Agency
as closed landfill sites that have ‘no PPC [Pollution
Prevention and Control] permit or waste manage-
ment licence currently in force. This includes sites
that existed before the waste licensing regime, if a site
has been licensed in the past, and this licence has
been revoked, ceased to exist or surrendered and a
certificate of completion has been issued.’*® Historic
coastal landfills are defined by this paper as historic
landfills within areas with an annual risk of flooding
by the sea of 0.5%, if not adequately defended, as
shown in the Environment Agency’s Flood Map for
Planning (Rivers and Sea). Prior to the Control of
Pollution Act 1974 (Secretary of State, 1974°°) there
were no requirements to keep records of waste dis-
posed of in any landfill sites and it was not until the
introduction of the Waste Management Licensing
Regulations 1994 (Secretary of State, 1994°!) that
records were required for all landfill sites accepting
controlled waste, i.e., household, industrial and com-
mercial waste, or similar waste. The Waste Licensing
Regulations 1994 only required records of estimates
of the total quantities of biodegradable, nonbiode-
gradable, and special wastes within a site and the
location of the special waste, i.e., controlled waste
with special disposal requirements relating to its
potential to pollute. The introduction of The Landfill
(England and Wales) Regulations 2002 (Secretary of
State, 20023%) made the keeping of detailed records
of waste origin, type, volume, and disposal location
mandatory, and introduced restrictions on disposing
of different classifications of waste, i.e., hazardous,
nonhazardous, or inert, within the same landfill.
However, the majority of historic landfills predate
the more stringent regulations and records for them
are either incomplete or only specify whether there is
evidence of the presence of inert, industrial, commer-
cial, household, special, or liquids/sludge waste.'®
Records for individual landfills do not provide details
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of the materials deposited, and the composition of
waste types changed greatly during the 20th cen-
tury.>>>* The Landfill (England and Wales) Regula-
tions 2002 (Secretary of State, 2002°%) also
introduced the requirement for most modern-day
landfills to have impermeable liners and leachate
management systems to control leachate leakage.

Existing Environment Agency datasets for
England are reviewed to determine the numbers of
historic landfills that are potentially at risk of coastal
flooding and/or erosion and the literature is reviewed
to understand the potential pollution pathways and
the environmental receptors that could be at risk. In
addition, we propose a conceptual site model for
contaminant transport pathways in the coastal zone
that could inform the understanding of potential pol-
lution pathways from historic landfills in a range of
geographical contexts.

ASSESSING THE NUMBER OF
HISTORIC LANDFILLS AT RISK OF
FLOODING OR EROSION IN ENGLAND

The Environment Agency has recorded the locations
of all 19,635 known historic landfills in England in
the Historic Landfill Sites National Dataset, which
consists of an ESRI shapefile containing the digitized
boundaries of historic landfills and an attribute table
which defines a unique Historic Landfill Database
Reference Number for each site and contains (where
known) data such as site addresses, site operator
names, opening dates, closing dates, and waste
types.'® The datasets are updated frequently and
were correct as of April 2017. To determine which
historic landfills are at risk of flooding, ESRI Arc-
MAP was used to compare their locations to flood
zone 3 as shown in the Environment Agency’s Flood
Map for Planning (Rivers and Sea) Dataset.>® This
showed 4759 historic landfills are located within
flood zone 3, i.e., they have a 1% annual probabil-
ity of fluvial flooding and/or 0.5% annual probabil-
ity of coastal flooding if they are not adequately
defended.

The focus of this paper are historic coastal land-
fills, of which, there are at least 1215 around the coast
of England (Figure 1). Historic coastal landfills in
England are predominantly clustered around estuaries
with major cities, e.g., Liverpool, London, and New-
castle upon Tyne, but in southeast England there are
also significant numbers in rural estuaries between
Harwich and Ramsgate. As historic coastal landfills
are often near major towns and cities, many are pro-
tected by flood defenses, and some form part of the
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FIGURE 1 | Locations of historic landfill sites in England. (created
using data © Environment Agency copyright and/or database right
2017. All rights reserved. Contains information © Local Authorities. ©
Crown copyright and database rights 2004 Ordnance Survey
100024198).

flood defense network, e.g., Dengie, Hadleigh
Marsh, and South Fambridge in Essex have flood
embankments constructed from landfill waste
capped with clay.?® Climate change effects mean it
is becoming increasingly likely that these sites will
be inundated, although this increased risk differs
around the UK due to variations in the effect of iso-
static adjustment on relative sea level rise,
e.g., between 1990 and 2095 increases in sea level
of 21-68 cm are projected for London for medium
emissions by UK Climate Projections compared to
7-54 cm for Edinburgh.**

In addition, 28% of the coastline of England
and Wales is eroding by at least 10 cm per
annum.>”3® To determine which historic coastal land-
fills are at risk of erosion, ESRI ArcMAP was used to
compare their locations to the Environment Agency’s
National Coastal Erosion Risk Map’s No Active
Intervention 95% confidence scenario. Without inter-
vention, 79, 122 and 144 historic coastal landfills are
expected to start to erode into coastal waters in the
short-term (by 2025), medium-term (by 2055) and
long-term (by 21035) respectively.
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MATERIALS AND CONTAMINANTS IN
HISTORIC LANDFILLS

Municipal Solid Waste can contain hazardous sub-
stances including cleaning products (acids, alkalis, and
solvents), batteries (heavy metals, e.g., lead, nickel,
cadmium, and mercury), pharmaceuticals, pesticides
and biocides, oils and fats, paints (solvents and fungi-
cides), wood preservatives (e.g., creosote, tributyltin, and
copper chrome arsenate), metal food containers (usually
coated with Bisphenol A, an endocrine disruptor), and
electrical and electronic equipment (e.g., mercury in
fluorescent tubes, heavy metals, chlorofluorocarbons,
and brominated flame retardants in plastics).>”*°
While there are numerous studies exploring leachate
composition,*™° few studies have looked at contami-
nant concentrations in solid waste materials.

Typically there are no detailed records of the
solid waste materials received in historic landfills." In
England, waste categories (e.g., household or indus-
trial) for each site are recorded (where known) .'°
However, 42% of historic landfills contain waste
from multiple categories with no data relating to the
proportions of each category present, while there is
no waste category information for 24% of the sites.
General records of household waste types do exist,
which show that the typical composition of waste
includes glass, metals, paper, plastics, putrescibles,
screenings (dust/ash), textiles, and other unclassified
materials.'>® The proportions of these in landfills
has changed significantly during the 20th century as
legislation and availability of new materials has
changed, e.g., there has been a reduction in screen-
ings and increases in paper and plastics proportions
since the mid-1960s,’*** however, the operational
period of 50% of historic landfills is unknown.'”

Studies of historic waste tend to have examined
metals in matrix materials,*”"*® often focusing on the
potential of the sites for ‘landfill mining” and therefore
overlooking metals contained in other waste materials
and potential contaminants that have no recycling
value such as organics or asbestos. Metal concentra-
tions can vary up to two orders of magnitude between
sites, with mean concentrations of up to 19 mg kg™
of Cd, 5730 mg kg™' of Cr, 5750 mg kg™ of Cu,
2640 mg kg™ of Pb, and 5600 mg kg™' of Zn.**~>*
These concentrations are approximately two orders
of magnitude higher than natural background con-
centrations in adjacent sediments.’*** The magnitude
of contamination may pose significant environmental
risks to surrounding coastal and estuarine environ-
ments; however, there have been few studies deter-
mining the potential impact upon sediment quality,
and flora and fauna®'’?%5 should the waste be
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released to the coastal zone. The significant variability
of contaminant concentrations, and the shortage of
data relating to operational periods, waste categories,
and material types present in historic landfills, makes
the meaningful assessment of the environmental risks
of historic landfills challenging.

POTENTIAL TRANSPORT AND FATE
OF POLLUTANTS FROM HISTORIC
COASTAL LANDFILLS

Qualitative conceptual models are presented (Figure 2)
to show the possible present-day and future pollution
linkages between solid waste stored within historic
coastal landfills and sensitive coastal receptors. Such
models can provide a framework to identify potential
pollution risks and inform further investigations and
remediation strategies. A number of sources of contam-
ination exist within these environments including solid
waste, contaminated leachate, and secondary sediment
contamination in the natural attenuation zone.'* Pollu-
tion pathways may include leachate migration, and ero-
sion of solid waste and contaminated sediments and
their release to the coastal zone.*

The composition of leachates, the water-based
solution generated by infiltration of water and inter-
nal moisture in a landfill,’® and, therefore, their con-
taminating capacity is strongly linked to the original
waste material composition®” and degradation state
of the waste. When waste is first deposited in a land-
fill, conditions are oxic, resulting in a short period®
of aerobic degradation classified by high temperatures
and CO, production. Once oxygen has been con-
sumed, anaerobic degradation becomes dominant,’”
where high concentrations of ammonia, CO,, and
carboxylic acid are produced and the waste tempera-
ture drops to 30°C.%° Carboxylic acid is then turned
into acetic acid, dropping the waste pH and signifi-
cantly increasing the solubility of metals.®’ This is
characterized by a discreet spike in heavy metal con-
centrations within the leachate.’®®* Subsequent meth-
ane production restores the pH and represents
methanogenesis, the longest degradation stage®® with
ammonia being produced throughout a landfill’s life-
time.*> The rate at which the landfill passes through
each of these stages can be significantly affected by
geological conditions at the site.®**°

Leachate composition and production from land-
fills has been thoroughly studied,®**® and in the
absence of basal linings leachate will migrate through
surrounding fine-grained sediments undergoing natural
attenuation®” and producing leachate plumes up to
1000 m in length.®® Where historic landfills are situated
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FIGURE 2 | Conceptual models showing leachate migration from a fully contained landfill under present-day conditions (a) and a potential
future scenario (b) where sea level has risen, the landfill's defenses have been breached, and erosion of solid waste and contaminated sediments

has occurred.

directly in the coastal zone, natural attenuation pro-
cesses such as sorption and precipitation within coastal
sediments will immobilize some contaminants,
e.g., metals, resulting in elevated sediment metal con-
centrations surrounding historic landfills while reducing
the impact of leachates on surface waters.®® These areas
of contaminated sediments extend beyond the landfill
boundary and constitute a secondary contamination
source, particularly where those sediments may be sub-
ject to erosion and remobilization.'>'3 Indeed, contam-
inated sediment surrounding historic landfills has been
identified as a significant cause of iz situ contamination

© 2017 The Authors. WIREs Water published by Wiley Periodicals, Inc.

in freshwater and coastal environments.®” In addition,
landfills still produce ammonia-rich leachates polluting
rivers and groundwaters decades after closure'!
although this is unlikely to have a significant ecological
impact in marine waters where ammonia levels are nat-
urally higher. The three-dimensional extent of leachate
plumes is dependent upon interaction with the water
table, and leachate viscosity and density and their verti-
cal movement can be unpredictable.”® However, the
extent of this natural attenuation zone in the coastal
environment, which will be influenced by tidally fluctu-
ating groundwater, has received little attention.
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While the release of leachates as a potential pol-
lutant pathway from landfills has been well studied,
most of this research assumes normal operating con-
ditions, i.e., sites are not inundated and waste is fully
contained.”! With sea level rise, and increased risks of
storm surges, saline intrusion, and flooding events,
there is an increasing risk that historic coastal landfills
may be inundated. Waste decomposition rates are
known to be largely controlled by moisture content
and leachate cycling can be used to increase moisture
content to speed up degradation®’; however, the
impacts of flooding on contaminant release have
rarely been considered.” Inundation with seawater
would increase the volume of leachate generated as
more water would percolate through the waste® and
would change the biogeochemical environment within
the landfill, i.e., introducing oxygenated, fully saline
waters, which may mobilize contaminants.

The impact of increased salinity on waste is rel-
atively well understood due to the recycling of leach-
ate  containing high total dissolved solids
concentrations (between 2000 and 60,000 mg L) in
bioreactor landfills.®® The goal of leachate recycling
is to maintain the moisture balance and enhance bio-
degradation and methane production,”® and in arid
regions seawater or brackish waters are sometimes
also used. However, at high salinity (> c. 3% dis-
solved solids) anaerobic bacteria are inhibited reduc-
ing biogas production increasing the time taken for
waste to stabilize with potential impacts for the long-
term management of historic landfills.”*”> A few
studies have examined biodegradation in landfill sites
inundated with seawater but have not looked at con-
taminant mobility.”®”” In the wider literature, it is
commonly recognized that organic compounds are
less soluble in seawater than freshwater due to the
‘salting out’ effect.”®”? Therefore, it is likely that sea-
water intrusion into historic landfills will not increase
the release of soluble organic contaminants. How-
ever, there is no such consensus for inorganic con-
taminant solubility. During waste degradation metals
are likely to have been immobilized by a number of
processes including sorption to soil particles and
organic matter in the waste.®* Studies of contaminant
release from sediments and soils following increases
in salinity generally report an increased metal solubil-
ity resulting from cation exchange processes and the
availability of complexing ions such as chloride and
sulfate.®*™®% The effects of salinity changes on the
release of metals from other materials are rarely stud-
ied, but Schifer et al.** found the solubility of metals
in urban particles decreased as salinity increased.
However, ultimately the behavior of metals with
increasing salinity is complex,®>** due to differences

6of 12

wires.wiley.com/water

in metal speciation and organic content of the mate-
rials.?%*%¢ Therefore, inundation of waste with seawa-
ter may result in an increased flux of dissolved
metals. The effects of saltwater intrusion into waste
could be modeled, e.g., using PHREEQC®’; however,
this requires data characterizing solid waste including
information on metal speciation, contaminant sorp-
tion characteristics, and organic matter content
which may not always be available for historic sites.

Under both current and future scenarios
(Figure 2), there is potential for solid waste to erode,
and erosion of landfills has been observed at a num-
ber of sites,!”¥%8? ¢ g at East Tilbury in the Thames
Estuary (Figure 3). In addition to the mobilization of
contaminants, flooding increases the probability of
erosion due to the movement of water over the site””
and because infiltration of high volumes of water can
adversely affect the structural integrity of the waste
increasing the likelihood of mechanical failure of the
landfill.”! In addition, rising sea levels and increased
storminess may increase the likelihood that defenses
currently containing the waste fail. This could lead to
the physical mobilization of pollutants and solid
waste including glass, metal, plastics, and asbestos.
In addition, the waste will be released to oxidizing
environments and as precipitation with sulfides is a
key mechanism for immobilizing metals®? there is
again potential for contaminant release.

ASSESSING THE RISK TO RECEPTORS

Although there have been few studies of the effects of
landfill  waste on  estuarine and  marine
environments, >!7°? it is known that leachates can
contain contaminants that may adversely affect flora

Eroding historic landfill
exposing solid waste materials

Eroded matrix and solid
waste materials

L

FIGURE 3 | Erosion of solid waste materials from East Tilbury
landfill in the Thames Estuary (Source: Dr. J. H. Brand, January
23, 2017).
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and fauna in coastal environments, e.g., through
deoxygenation, eutrophication, direct toxicity, or
toxicity as a result of biomagnification/bioaccumula-
tion.'>”> However, until data are obtained relating
to historic coastal landfill leachate volumes and con-
taminant concentrations in saline environments, it is
not possible to determine the specific effects there
may be on receptors. In addition, it is not possible to
assess the effects of eroded solid waste until data are
obtained relating to the material types, contaminant
concentrations, and rates of erosion, but it is known
that there is the potential for mechanical impacts on
ecology in addition to chemical ones if waste erodes,
e.g., through ingestion of plastics.”*"*

While there is still a need for further data to
quantify the potential release of contaminants from
historic coastal landfills following inundation and/or
erosion, it is clear that there may be significant
impacts in the coastal zone to humans, ecology, and
surface waters. The Historic Landfill Sites National
Dataset,'® Flood Map for Planning (Rivers and Sea)
Dataset,> and ESRI ArcMAP were used to assess the
proximity of environmentally sensitive areas to his-
toric coastal landfills, and where the receptors were
within 100 m they were considered ‘at risk.” It should
be noted that this assessment does not consider the
potential for buoyant eroded waste materials, such as
wood and plastics, to carry contaminants to vulnera-
ble receptors in remote locations.”® Table 1 shows the
number of landfill sites that pose a risk to each

TABLE 1 | Number of Historic Coastal Landfills in or within 100 m
of Sensitive Environmental Areas in England

Number of Landfills in
or within 100 m of

Proportion of the
1215 Historic

Site Type Sensitive Sites Coastal Landfills (%)
SSSI 411 34
National Nature 33 3
Reserve
SAC 169 14
SPA 302 25
Ramsar 305 25
OSPAR Marine 246 20
Protected
Areas
Bathing Water 579 48
Catchments
Bivalve mollusc 47 4
production
areas'

! Some locations have multiple bivalve production areas designated for dif-
ferent species.
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TABLE 2 | Number of Sensitive Environmental Areas on or within
100 m of Historic Coastal Landfills in England

Number on or within
100 m of Coastal

Proportion of the
Total Number of

Site Type Landfills Sites in England (%)
SSSI 120 3
National Nature 21 9
Reserve
SAC 28 11
SPA 39 46
Ramsar 37 51
OSPAR Marine 47 39
Protected
Areas
Bathing Water 128 32
Z0I
Catchments
Bivalve mollusc 137 31
production
areas'

!Some locations have multiple bivalve production areas designated for dif-
ferent species.

receptor type assessed, and the types and numbers of
potentially vulnerable receptors are shown in Table 2.

Humans may be exposed to contaminants in
eroded landfill waste through direct contact with
debris on the foreshore, e.g., through handling, acci-
dental cuts and inhalation (e.g., asbestos), or through
bathing in water that may be contaminated by either
leachate or eroded waste. Approximately one-third
of England’s bathing water ZOI (zones of influence)
catchments®” are within 100 m of historic coastal
landfills (Table 2).

Eroded waste material has the potential to
harm flora and fauna by physically and chemically
altering the estuarine environment, e.g., by increasing
localized suspended particulate matter concentrations
and nutrient loads, reducing dissolved oxygen con-
centrations, and physically damaging benthos in the
estuary by crushing or smothering them, but there
have been no studies of the impact of landfill debris
on the marine environment.'””® Physical harm to
fauna in the estuary could also result from the release
of plastics from landfill sites. The mechanical impacts
of plastics on marine organisms include starvation or
suffocation due to entanglement, and injury due to
ingestion, which can result in reduced feeding, inter-
nal injuries, gastrointestinal  blockages, and
death.”*”® Contaminants in the solid waste and
leachates may be taken up through the roots of flora,
or ingested by filter feeding fauna, which can result
in either direct toxicity or biomagnification/
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bioaccumulation leading to toxicity'**** and can

result in trophic transfer of contaminants through the
food web. Approximately one-third of bivalve
mollusc production areas are within 100 m of historic
coastal landfills (Table 2) (Cefas maps of bivalve mol-
lusc production areas, O. Morgan, personal communi-
cation, email, November 2, 2015).

The potential exposure of a range of other envi-
ronmentally designated sites to landfill contaminants
was assessed using JNCC'® and Natural England'”!
datasets and it was found large numbers of designated
sites are potentially at risk of contamination if historic
coastal landfills are not adequately maintained, includ-
ing over 50% of England’s Ramsar sites (Table 2).

CONCLUSION

In England alone there are at least 1215 historic
landfills in low-lying coastal areas that are at risk of
flooding, and 79 sites that are at risk of erosion (by
2025) if they are not adequately defended, but there
is a very limited understanding of the environmental
risk posed by these historic coastal landfills. There
are limited data available for the assessment of the
risk of pollution from eroded solid waste, and while
seawater intrusion into historic coastal landfills is
likely to mobilize inorganic contaminants, this is sup-
ported by few detailed studies. Yet, over one-third of
historic coastal landfills in England lie in close prox-
imity to designated environmental sites and half are
in/near areas influencing bathing water quality. This
knowledge gap means coastal managers are more
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likely to select conservative management policies and
continue defending the sites, e.g., hold-the-line, in
order to ensure compliance with legislation that pro-
hibits pollution of surface waters, when alternative
more sustainable and cost-effective  policies,
e.g., managed realignment, may be preferred.

Although this paper has focused on the status
of historic coastal landfills in England, the issues
raised are equally applicable to vulnerable landfill
sites elsewhere in the world, some of which have
already started to erode and release waste.'9%193
With the anticipated effects of climate change, ero-
sion events are likely to become more frequent.
Strategies to mitigate the risk of contaminant
release from historic landfills such as excavation
and relocation or incineration of waste are being
used in some locations, e.g., Alaska'%* and Switzer-
land.'® However, these strategies would be pro-
hibitively expensive for countries which have high
numbers of large capacity historic landfill sites in
vulnerable coastal locations. Therefore, it will be
necessary both to identify which sites pose the
greatest pollution risk in order that resources can
be prioritized accordingly, and to develop alterna-
tive management strategies based on site specific
pollution risk. Before such management strategies
can be achieved, there remain many unknowns to
be addressed including the extent of legacy pollu-
tion in coastal sediments, the impacts of saline
flooding on contaminant release, and the nature,
behavior, and environmental impact of solid waste
release in the coastal zone.
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NE/I018212/1. All data analysis was carried out in the School of Geography, Queen Mary University of

London.

FURTHER READING

Further information and an interactive map can be found here: http://www.geog.qmul.ac.uk/research/historiclandfill
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